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Foam is…
• …a random packing of bubbles in a relatively small 

amount of liquid containing surface-active impurities
– Four levels of structure:

– Three means of time evolution:
• Gravitational drainage
• Film rupture
• Coarsening (gas diffusion from smaller to larger bubbles)



Foam is…
• …a most unusual form of condensed matter

– Like a gas:
• volume ~ temperature / pressure

– Like a liquid:
• Flow without breaking
• Fill any shape vessel

– Under large force, bubbles rearrange their packing configuration

– Like a solid:
• Support small shear forces elastically

– Under small force, bubbles distort but don’t rearrange



Foam is…
• Everyday life:

– detergents
– foods (ice cream, meringue, beer, cappuccino, ...)
– cosmetics (shampoo, mousse, shaving cream, tooth paste, ...)

• Unique applications:
– firefighting
– isolating toxic materials
– physical and chemical separations
– oil recovery
– cellular solids

• Undesirable occurrences:
– mechanical agitation of multicomponent liquid
– pulp and paper industry
– paint and coating industry
– textile industry
– leather industry
– adhesives industry
– polymer industry
– food processing (sugar, yeast, potatoes)
– metal treatment
– waste water treatment
– polluted natural waters

• need to control stability and mechanics
• must first understand microscopic structure and dynamics…

• familiar!
• important!
• familiar!
• important!



Condensed-matter challenge
• To understand the stability and mechanics of bulk foams 

in terms of the behavior at microscopic scales
bubbles are the “particles” from which foams are assembled

– Easy to relate surfactant-film and film-bubble behaviors
– Hard to relate bubble-macro behavior

• Opaque: no simple way to image structure
• Disordered: no periodicity
• kBT << interaction energy: no stat-mech.
• Flow beyond threshold: no linear response

• hard problems!
• new physics!
• hard problems!
• new physics!



Jamming
• Similar challenge for seemingly unrelated systems

– Tightly packed collections of bubbles, droplets, grains, cells, 
colloids, fuzzy molecules, tectonic plates,.…
• jammed/solid-like:  small-force / low-temperature / high-density
• fluid/liquid-like:      large-force / high-temperature / low-density

force-chains (S. Franklin) avalanches (S.R. Nagel) universality?



Foam Physics Today
• visit the websites of these Summer 2002 conferences to 

see examples of current research on aqueous foams
– Gordon Research Conference on Complex Fluids

• Oxford, UK

– EuroFoam 2002
• Manchester, UK

– Foams and Minimal Surfaces
• Isaac Newton Institute for Mathematical Sciences

– Geometry and Mechanics of Structured Materials
• Max Planck Institute for the Physics of Complex Systems

• after these lectures, you should be in a good position to understand 
the issues being addressed & progress being made!
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Foam production I.
• Shake, blend, stir, agitate, etc.

– Uncontrolled / irreproducible
– Unwanted foaming of multicomponent liquids

• Sparge = blow bubbles
– Polydisperse or monodisperse
– Uncontrolled/non-uniform liquid fraction

foam

solution

porous plate
gas 

foam

gasgas

bubble raft



Foam production II.
• in-situ release / production of gas

– nucleation
• eg CO2 in beer

– aerosol:
• eg propane in shaving cream
• small bubbles!

– active:
• eg H2 in molten zinc
• eg CO2 from yeast in bread



Foam production III.
• turbulent mixing of thin liquid jet with gas

– vast quantities
– small polydisperse bubbles
– controlled liquid fraction

• lab samples
• firefighting
• distributing pesticides/dyes/etc.
• covering landfills
• supressing dust
• …

jetsolution

gas

foam



Foam production IV.
• many materials can be similarly foamed

– nonaqueous liquids (oil, ferrofluids,…)
– polymers (styrofoam, polyurethane,…)
– metals
– glass
– concrete

• variants found in nature
– cork
– bone
– sponge
– honeycomb



Foams produced by animals
• spittle bug:  

• cuckoo spit / froghoppers:

• stickleback-fish’s nest



Foam production V.
• antifoaming agents

– prevent foaming or break an existing foam

• mysterious combination of surfactants, oils, particles,…



Microscopic behavior
• look at progressively larger length scales…

– surfactant solutions
– soap films
– local equilibrium & topology



Pure liquid
• bubbles quickly coalesce – no foam

– van der Waals force prefers monotonic dielectric profile; 
therefore, bubbles attract:

a      b      a

l
“effective interface potential”
is free energy cost per unit area:
Vvdw(l)= -A/12πl2, A=Hamaker constant

l



Surfactant solution
• surface active agent – adsorbs at air/water interface

– head: hydrophilic (eg salt)
– tail:  hydrophobic (eg hydrocarbon chain)

• lore for good foams…
– chain length: short enough that the surfactant is soluble
– concentration: just above the “critical micelle concentration”

eg sodium dodecylsulfate (SDS)
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{NB: lower σ doesn’t stabilize the foam…

http://www.kcpc.usyd.edu.au/discovery/9.5.5-short/images/sds.gif


Electrostatic “double-layer”
• adsorbed surfactants dissociate, cause repulsion necessary to 

overcome van der Waals and hence stabilize the foam
– electrostatic
– entropic (dominant!)

– NB: This is similar to the electrostatic stabilization of colloids
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VDL(l)= (64kBTρ/KD)Exp[-KDl],

ρ = electrolyte concentration
KD

-1 ~ ρ-1/2 = Debye screening length



Soap film tension
• film tension / interface potential / free energy per area:

γ(l) = 2σ + VVDW(l) + VDL(l)   ~  2σ

• disjoining pressure: Π(l) = -dγ/dl
– vanishes at equilibrium thickness, leq ~ KD

-1 (30-3000Å)

thickness, l



Film junctions
• Plateau border

– scalloped-triangular channel where three films meet
– the edge shared by three neighboring bubbles

• Vertex
– region where four Plateau borders meet
– the point shared by four neighboring bubbles

http://www.booker.demon.co.uk/paulthomas/stuff/tomography/pres1_big.gif


Liquid distribution
• division of liquid between films-borders-vertices

– repulsion vs surface tension
– wet vs dry

Πrepulsion dominates
=> maximize l 

σ dominates
=> minimize area

dry
=> polyhedral

wet
=> spherical



Laplace’s law
• the pressure is greater on the inside a curved interface

due to surface tension,  σ = energy / area = force / length

– forces on half-sphere:
• ΣFup = Piπr2 – Poπr2 – 2πσr = 0

– energy change = pressure x volume change:
• dU = (∆P)4πr2dr, where U(r)=4πr2σ

r

σ Pi =  Po + 2σ/r {in general, ∆P= σ(1/r1+1/r2)}

Po

σPi



Liquid volume fraction
• liquid redistributes until liquid pressure is same everywhere

• typically:  film thickness l << border radius r << bubble radius R
– liquid volume fraction scales as ε ~ (lR2 + r2R + r3)/R3 ~ (r/R)2

– most of the liquid resides in the Plateau borders 
• PB’s scatter light…
• PB’s provide channel for drainage…

r

l Pfilm = Pgas + Π(l)

Pborder = Pgas + σ/r

bubble radius, R



Plateau’s rules for dry foams
• for mechanical equilibrium:

– i.e. for zero net force on a Plateau border,
– zero net force on a vertex,
– and Σ∆P=0 going around a closed loop:

(1) films have constant curvature & intersect three at a time at 120o

(2) borders intersect four at a time at cos-1(1/3)=109.47o

• rule #2 follows from rule #1
• both are obviously correct if the films and borders are straight:

ΣF=0

P

P

P



Rule #1 for straight borders
• choose r1 and orientation of equilateral triangle
• construct r2 from extension down to axis
• construct r3 from inscribed equilateral triangle

– NB: centers are on a line

– films meet at 120o (triangles meet at 60o-60o-60o, and are normal to PB’s)
– similar triangles give (r1+r2)/r1 = r2/r3,  i.e.  1/r1 + 1/r2 = 1/r3 and so ΣP=0

r1 r3
r2

Plateau border in/out of page



Curved Plateau borders
• proof of Plateau’s rules is not obvious!

– established in 1976 by Jean Taylor



Decoration theorem for wet foams
• for d=2 dimensions, an equilibrium wet foam can be 

constructed by decorating an equilibrium  dry foam
– can you construct an elementary proof?

• PB’s are circular arcs that join tangentially to film
• theorem fails in d=3 due to PB curvature



Next time…

• periodic foam structures

• disordered foam structures
– experiment
– simulation
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